Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
نویسندگان
چکیده
We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach allows to train while respecting PDEs as strong constraint optimisation apposed making them part loss function. resulting models are discretised space by finite element method (FEM). applies both stationary and transient well linear/nonlinear PDEs. describe implementation an extension existing FEM framework FEniCS its algorithmic differentiation tool dolfin-adjoint. Through series examples we demonstrate capabilities recover coefficients missing PDE operators from observations. Further, proposed is compared alternative methodologies, namely, physics informed standard PDE-constrained optimisation. Finally, on complex cardiac cell model problem using deep networks.
منابع مشابه
Simulation of Grinding by Means of the Finite Element Method and Artificial Neural Networks
Simulation of grinding is a topic of great interest due to the wide application of the process in modern industry. Several modeling methods have been utilized in order to accurately describe the complex phenomena taking place during the process, the most common being the Finite Element Method (FEM) and the Artificial Neural Networks (ANN). In the present work, a FEM model and an ANN model for p...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملFabric Drape Prediction Using Artificial Neural Networks and Finite Element Method
In this paper the mechanical behavior of woven materials is investigated in order to study and predict their dynamic draping. This model can simulate fabric deformation, taking into account its physical and mechanical properties. Once the model is tested and validated, an artificial neural network designed to train fabric drape is coupled with the finite element model to predict the drape behav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110651